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Polymer dynamics in time-dependent Matheror-de Marsily flows: An exactly solvable model
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We introduce a model of random layered media, extending the Matheron—de Marsily model: Here we allow
for the flows to change in time. For such layered structures, we solve exactly the equations of motion for single
particles and also for polymers modelled as Rouse chains. The results show a rich variety of dynamical
patterns.
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I. INTRODUCTION into the problem. By this the time fluctuations of the flow
give rise to interesting dynamical behaviors. In particular, we

The dynamics of particles and particle assemblies in ranshow that at intermediate times<tg) the MSD of any
dom force fields is a subject of intense current intefese  tagged bead of a polymer chain foIIov(/sfz(t)>~t3/4; ie.,
Refs.[1-3] and references thergirSuch fields often lead to the MSD moves faster than the Rouse l&¥X?(t))~t2
qualitative deviations from simple dynamic patterns, and rewhich holds in the flow-free cadé2,13. On the other hand,
sult in the anomalous diffusion of the particles involved. A at timest>tg, we recover a diffusive behavior, in which,
standard prototype model is that of Matheron and de Marsiljnowever, the effective diffusion constant scalesNas’? for
flows (MdM) [1-10Q], originally designed to describe the sufficiently long chains, i.e., vanishes withat a slower rate
transport of a solute in porous media. Similar mathematicathan the Rouse diffusion constant, which goes && 1/
forms arise when treating electrons in random potentials or The paper is structured as follows: In Sec. Il we formulate
spin depolarization in random field$0]. In the MdM model  the model and introduce the basic notation. In Sec. Il we
the environment is viewed as consisting of layers of forceanalyze the dynamics of an individual particle subject to
fields[4]. The particle mean-square displacem@viSD) in  time-dependent MdM flows. Section IV is devoted to the
the direction parallel to the flows, say, along tWeaxis, analysis of the dynamics of a tagged bead of an infinitely
(Y?(t)), can be evaluated exactly; it has been shown that itong Rouse chain, while Sec. V deals with effects typical for
grows as(Y?(t))~t%2[4,5,8, t being the time. Recently the finite chains. We conclude with a discussion and a brief sum-
dynamics of Rouse polymer chains in time-independentnary of results in Sec. VI.

MdM flows was also discussed and several exact results have

been derived1,2]. In particular, it has been shown that the Il. THE MODEL

MSD of some tagged bead of the chain may display different

dynamical regimes depending on whether the time of obser- A standard polymer model due to Rouse] consists in
vation is shorter or longer than the so-called Rouse tiple  viewing the macromolecule as a seriesNobeads, linearly
Now tg goes as\?, whereN is the degree of polymerization, connected by harmonic springs. Its dynamics in solution, but
i.e., the chain’s lengthl11-13. For times shorter thaty a  Subject to external force fields and excluding hydrodynamic
subballistic law (Y?(t))~t”* was derived, while it was interaf:tions and steric hindrances, is given by the Langevin
shown that for times longer thai, the t¥2 dependence is €duation[11-13

restored, the prefactor being a growing functioMbfThus a dR
tagged monomer of a polymer immersed in MdM flows “n _
moves in general faster than an individual partitle., a gt = K(Rntat Ry = 2R) +F(Rn D + (0. 1), (1)
chain withN=1), a fact which has its physical explanation

[1,2]. for 1=n=<N, complemented bR,=R; andRy=Ry. In

These results concern, however, velocity fields whose dithis equatiory is the coefficient of frictionR,, is the position
rections and magnitudes are random in space but fixed iaf the nth monomerK =3kgT/b? is the spring constant ac-
time: we speak of quenched disorder. For random divercounting for the Hookean interaction of the monomégsT
genceless velocity flows, for which the flows change withbeing the temperature multiplied by the Boltzmann constant
time, we show in the following that new results emerge. andb the average distance between the beads, (mdt)

In the present paper we present exact dynamical solution®presents the thermal noise due to interactions with the sol-
both for individual particles and for long Rouse chains mov-vent. In Eq.(1) the F(R,,t) denote the extra forces due to
ing in time-dependent, random layered media. Distinct fronthe imposed velocity fields. Equatid) is a simplified de-
previous workg1,2,4,5,8, we now allow the velocities in  scription of the dynamics of a polymer i@ solutions
the layers to change randomly with time. We thus take intd12,13.
account the fact that the environment itself may be subject to Treating the indexh as continuous leads to the replace-
dynamical processes, thereby introducing new time scalement of the discrete termR(, . ;+R,_1—2R,) by the La-
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placian operatow?R,/dn? and of Ry=R; andRy=Ry.;  With 7,(t) being theX component of the thermal noise.
by the Rouse boundary conditiofik2] Equation(6) yields for the MSD averaged over thermal his-
tories the usual diffusion result
IR,

Jn

=0, for n=0 and n=N. (2 kT

xz(t)zth =2Dt. (7)
Next, we specify the forces entering the right-hand side

(RHS of Eq. (1). We let, as usual, the thermal noise be Through the last relation we have introduced the “bare”

Gaussian with zero mean; due to the fluctuation-dissipationliffusion constanD. For theY component we have to solve
theorem, the second moment takes the form the equation

7a(N 1) 7p(N" 1) =2Kg T8, p0n nr 6(t=1"). (3

In Eq. (3) we let the Greek indices denote the Cartesian

components. The MdM model is obtained by assuming laywith f(X(t),t) being the random function of Eqd5). The
ered flows, say, by taking the forces to be alongYhexis,  solution of Eq.(8) is

but to depend solely on thé componen{see, e.g., Fig. 1 in

[1]):

dy
Fp= MO+, ®

1t
Y(t)=2f dr ny(7)+f(X(7),7)], 9
F(R,,1)=(0,f(X,,1),0). (4) 0

This choice ofF models a layered medium along theaxis; ~ Where we set(0)=0. Being interested in the mean-square
each layer has a randofiut for all points of the layer fixed ~displacement we have
velocity pointing along thér axis. Due to the uncoupling of

the different components in the Rouse model, the dynamics Y2(0)) = 2Dt + thdt ftdt FOX(E) I OX(E)
(Y2(1)) 720t ) At FOX(L). )T X(12). 1)),

in the transversal plang.e., theX andZ componentsis not

influenced by the presence of the velocity fields. However, as (10
we shall see, the motion parallel to tMeaxis is dramatically
changed. by noting that the different sources of randomness are decou-

The random forcé~(R,,t) (i.e., its Y componentis as-  pled. Then, by virtue of Eq5) we have for the second term
sumed to be Gaussian and zero centered. For the second

moment we take [t [ a(foxe) WIE)0)

A
FOCHEX )= 2= 8(X—X")e~ =t (5) A
2l =55 f otdtl fotdtz S(X(ty)—X(tp))e =t (11

Note that the strength of the random velocity field depends

on the constant$’ and A. Equation(5) defines a changing Now it is a simple matter to average t#efunction on the

environment with a short-term memory, exponentially de-RHS of Eq.(11), by making use of its Fourier representation;
creasing on the time scalg we will call T the renewal time.  this yields
In the limit ' and keeping the ratid/I" fixed we re-

cover the standard quenched MdM model. We shall denote —— (= dk .

this limiting procedure as thguenched limitn the rest of the S(X(ty) = X(t2))= fﬁx 5. eXP—TKIX(t) = X(t2) I}
paper. On the other hand, whdn—0, exp(|t/I)/(2I')

tends to the Dirac5(t) distribution; this limit allows us to foc

study an environment without memory. We distinguish aver- =
ages over thermal histories from averages over configura-

dk
>— exp(—DK?[t;—t])

o 27T

tions of the velocity field by using an overbar for the former 1
and angular brackets for the latter. = (12
g \ 4’7TD|tl_ t2|

lll. DYNAMICS OF A SINGLE PARTICLE Here we noted that the procexsét) is Gaussian and we used

To fix the ideas, we start with the case of a single bead irn the second line the well-known rule for averaging Gauss-
time-dependent MdM flows. Thel=1 andK=0. Because ian exponential forms. Inserting E(L2) into Eq. (11) and
of the decoupling of the different coordinates, tkeandZ  integrating leads to
components of the particle displacement obey the force-free
Langevin equation

. A [T
(Y?(t))=2Dt+ 2—§2\[5{(t/F—1/2)erf[\/t/_I‘]
é’a = ﬂx(t)x (6) + t/(ﬂTF)e_t/F}, (13)
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where erf x] denotes the error function, E¢7.1.1) in Ref. I3 ik
[14]. Equation(13) is exact and is the main result of this P(Ln=\ 7« ex;{ } (18)

section. From Eq(13) we have in the limit<I’ aKr

2 The MSD of thenth bead, averaged both over thermal his-
VTS 24TY2 ()32 [(t)% tories and dom velocity fields, takes the f
(YZ(1))=2Dt+ ( ) ) (1:) (19 ories and over random velocity fields, takes the form

322D\ T
Yz LV, A : -
where the second term represents the result for standard,(Yn(t)=2D| 5| t**+ zrngodleodefxdll

quenched MdM flowg4]. The physics underlying such a

behavior is well understoofil,2,4,6,7,9 and it is due to o

dynamically induced correlations in the velocities felt by the X LwC“z P(n—Iy,t=7m)P(n—Iy,t—1,)

particle.
In the opposite limitt>1", we are led to X @~ |l 5(X|1( Tl)_XIZ(TZ))1 (19)
—— A r I
Y2(1))= 2Dt + \ﬁ” 1)=2D. t+0O(1), vv_here we used the second moment of the velocity field,
Ym) 2:°r VD o) ert +O(1) given by Eq.(5).

(15) To proceed further, we need to  know

8(X (11) =X, (72)). This form can be evaluated exactly
(see Refs[1,2,12,13 for more details The result(for 7;

A \F <1,) is explicitly
Dett=D+ —=\/=; 16
eff 4{21_, D ( ) K 1/4

(X (1) =X (72))= >
i.e., we find diffusion with a renormalized diffusion coeffi- Am{D
cient. (20)
Thus for large times the fluctuations of the environment
(flow) contribute additively to the diffusion coefficient. Note,
however, that now diffusion is anisotropic: Parallel to and M(l,7q,70)=(27) Y%+ (27,) %2
perpendicular to the layers one hag=Dg¢¢; andD, =D,
respectively. The dependence Df; on bothD and T is
easily visualized: For larged the perpendicular motion is
more rapid and hence the velocity field viewed by the par-
ticle changes more rapidiyand is less efficient further- (21
more, a decrease i leads to a similar effect. On the other Inserting Eqs.(20) and (21) into Eq. (19) and reverting to

hand, in thel'—co limit (with A/T" fixed) D¢ diverges, @ gimensionless variables, say, by setting
sign that the motion gets to be superdiffusive; see (E4).

Since the disorder changes completely on the time scale O,=1,1t, O,=7,/t, O=1lt,
I', one may view Eq(15) as arising from renewals of the
g 1/2 g 1/2
—) , 22:(|2—n)(—) , (22

where

-12
M(lo=1y,71,72) )

in which the functionM (I, 7, 7,) stands for

aK\ Y2 (n
-4 T j drP(l, 7+ 7,—27).
0

process in Eq(14) (with total loss of memoryevery  units
of time, wherer is of the order ofl'. In fact, since the z=(lh=n| 73 KT
crossover in behavior frof2AT'Y%372(wD)Y?|(t/T)%? to
[A72£2(D)Y?]t occurs att,=97I'/16~1.767", we repro-  we finally arrive at the expression
duce Eq.(16) exactly if we taker=t..

g )1/2 A

1/4
5 ) w2, 2 714
K tHe+ +T72| 4D2mz t"g(t/T),

We consider next the opposite case of an infinitely long (23
Rouse chain. For a given thermal history, the solution of Equth (1) being the dimensionless function:
(1) for the Y component of the displacement of thth bead 97 9 '

can be readily found by standard medsse Refs[1,2]) and

2 —
IV. INFINITELY LONG ROUSE CHAIN (Yn(t))=2D

1 02 ©
reads g(n)=f dezf de, e*("lf“’z)”f dz
0 0 —®
17t © 2 2
Yn(t)zzf drf dI P(n=1,t=7)[f(X/(7), 7))+ ny(l, 7], oo e /(- 0)-%/1-0)
0 — X f d22 ’
17) o \/(1_91)(1—92)M(21_22,91,92)
where we again, for simplicity, assumed thé;(0)=0. (29
Here P(l,7) is the Green’s function solution of the one- _
dimensional(1D) diffusion equation where for6,= 6, the functionM(z,0,,6,) is
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e—22/(01+ 0,—26) V. FINITE ROUSE CHAINS

~ 0
M(z,01,02)=\/201+\/202—2f "d6
0

0.+ 0,— : For finite Rouse chains there appears yet another time
b1 20(25) scale, namely, the so-called Rouse time= ¢{N?/(7°K)
[11-13, tg being the largest internal relaxation time of the

In the limit ' —o (quenched MdM flows »=t/I" tends to  structure. To display its role we start by solving Ej) for
zero andg(#n) to a constant. Hence, fdf—o and not-too-  finite N. The solution is found most readily in terms of nor-
smallt one hag'Y2)~t"4 this reproduces precisely the cor- mal coordinate$12], introduced, say, fo¥,(t), through
responding result derived in Refd] and[2]. Moreover, we
expect this dynamical behavior to show up also for fifite
as long ag<T, i.e. p<1. Yn(t)= Z_w cogp7n/N)Y(p,t), (29

Turning now to finite but smalll, for t>T", i.e., 7@ -
=t/I'>1, the leading large; behavior of g(#) can be
found by integrating in Eq.24) over 6, by parts with respect
to exp@, 7). We find thatg(») has the form

o0

and similarly forX,(t) andZ,(t). Inserting these forms into
the equation of motion, Eq1), and solving yields straight-
forwardly for theX componen{1]

1
1
_2) ' 20 X(p,t)= —jtdrden ne(n, 7)cog prn/N)e Pt Iitg
7 NZJo  Jo
(30)

( )—C+O
9(7» 7

whereC is a dimensionless constant, given by

e*(zfﬂg)/(l*(’) and similarly for theZ component. For th&¥ component one

C—fldafo dz f“ dz has instead
- 1 2 .
O T T (1= 0)VM(z1-2,,6,0) 1t (N
(27) Y(p,t):N—ngdeo dn[ 74(n,7)+f(X(7),7)]
Inserting now Eq(26) into Eq.(23) we find that the MSD of )
any bead of an infinitely long Rouse chain obeys x cog pmn/N)e P (= 7/tr, (31)
—— ¢\, cA K o\ i The behavior of the beads depends on the rafig. For
(Ya(1)=2D| 5| 't +1-r_§2 4D07m¢ t short timest<tg the sums ovemp for X,(t), Y,(t), and

Z,(1), e.g., Eq.(29), can be converted into integrals; exem-
+0O(t™ 4. (29 plarily, inserting Eq.(31) into Eqg. (29) and performing the
integration leads to Eq17). Thus fort<tg each bead be-
The significant terms of E¢(28) can be understood as fol- haves as if it were part of an infinite chain: Hence the results
lows: The first term is just the Rouse result in the absence dirom the previous section apply. In the opposite regime, for
flows. The second term arises due to the time dynamics af>tg, only the zeroth modp=0 contributes significantly to
the MdM flows, to be contrasted with th€’* term for Eq. (31), and the motion of each bead follows closely that of
guenched MdM flows. This term appears, of course, evetthe center of masé&.m) of the chain. In the case of thé
when the time correlation in Ed5) is of 6 form, i.e., for and Z components, this is a diffusive behavior with the
I'—0. renormalized diffusion constait— D/N [11-13. For theY
Therefore, we have for monomers attached to long polycomponent, however, we have fortg approximately
mer chains that at long time¥2(t))~t%4 i.e., that the ex-
ponent of the anomalous diffusion is larger than in the force- ——— —— D A t t N
free case. One may contrast this behavior to that of a single(Yn(t)=(Y*(0)) =2 t+_— 2] dTlf def dng
. : : I 2N°T'¢Jo 0 0
particle, where at long times time-dependent velocity fields
only change the diffusion constant, but leave the exponent of N
t (unity) unchanged. Hence the influence of the velocity Xf dn; 5(Xn1(7'1)—an(Tz))ef‘Tsz'/F- (32
fields on the monomer’s motion differs from that of the ther- 0

mal noise. The difference can be traced to the form of th%e remark that the terms on the RHS of E82) describe

disorder; the solvent's role is included through MdM the dynamics of thef component of the chain c.m. for 4l
5(X'1(t1)_x'2(t2).)_ fields, which depend. on th COMPO" " The evaluation of Eq(32) is rendered complex for finital
nents of the positions of the beads, while thermal noise deg e to the appearance of the two-timidunction in the in-
pends On5I1,I2_- This means that while different MONOMETS teqral. It is, however, possible to proceed along the lines of
always experience different forces from the heat bath, disRef.[2], but this is outside the scope of the present article.
tinct monomers with the samécomponentgthere are many  Since the analysis simplifies fdf— and forI'—0, we
such monomers, since the polymer’s projection onXtexis  shall consider only these two cases in the following.
corresponds to a simple random wabkxperience identical ForI'— the flows get to be time independent; then the
velocity fields, a fact which qualitatively enlarg€¥2(t)). approach follows the derivation given jf,2] for quenched
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MdM flows. Thgre it was found that the leading behavior of 1 CA K /4 3C 4A K 1
the bead’s motion obeyEq. (364 of Ref.[1], here in our S 34— — —
notatior 2tg 772\ AD%m¢ gnl4 3.2 V2D7! N
(39)
Y2(0))~ A \/Nts/z. 33 L . o
(Ya(t)) F_gz D' (33 which is 3c/(874 times the correction in Eq37).

A similar argument can be put forth wheéeI'>tg. In

. 2 . . .
that is, the c.m. moves practically as an individual particle s case{Yy(t)) can be viewed as arising from renewals

i.e., Eq.(14), with D being, however, replaced y/N. (everyI" units of time of the process given by~E({33). This
ForI'—0, we have for the second terfall it I) in Eq.  leads to yet another effective diffusion constan, which
(32 besidesdD/N has an additional term proportional to
A ft N N A N
I= dfdnfdn S(X —-X . (34 /
N2§2 0 T 0 1 0 2 O( ”1( 7) n2( 7). (34) ? or (39)

For t>tg most of ther in Eq. (34) also obeyr>tg, so that
we may view the GaussiaX process as stationary, i.e., This reproducesafter replacing®/N by D) the result of the
(Xn, (1) = Xn,(7))°=D¢|n;—n,|/K, independent of r.  single-particle case, Eq16).
Hence We summarize the findings for the MSD of a bead on the
finite Rouse chain. Whet®max(tg,I"), there is normal but
»dk _ anisotropic diffusion of the bead under observation, de-
5(Xp, ( T)_xnz(T)):f > ek[Xn (1) =X ()] scribed by the diffusion constam, =D in the directions
0&m perpendicular to the flow and an effective diffusion constant

cdk D|>D parallel to the flow. The value 0D~|| depends on
=j Ee"‘ DZIny—nal/2K whether tg<I" or tg>TI": For tg<I', D =D} [see Eq.

0 (39)], and fortg>T", D;=DJ;;, Eq.(37). In the short-time

/ K regimet<min(tg,I'), we always haver?(t)~t”% However,
= m (35  the intermediate regime again depends on the magnitudes of

tg andT. If t<T" we observe Y2(t))~t*?[Eq.(33)] in the

Inserting now Eq(35) into Eq. (34) and performing the in- "€9iMetr=<<t<I". Butif, on the other hand, <tg, thezn for
tegrations leads to times t obeying I'<t<tg, the MSD behaves a§Y.(t))

~134 Our model gives therefore rise to a very rich dynami-
| - \/ < ftd de de | |~1/2
=— T n n,/ny—n
N2z V2Dwl)o Jo o tlo T PNt R
VI. CONCLUSION

cal behavior.
8A K t ) . .
=— A\ = (36) In this work we introduced a new variant of the

3¢2 V2Dm N Matheron—de Marsily model of layered random media, in

which the velocity field is also allowed to change with time.
Using this expression in Eq(32) we see that(Y3(t))  We solved exactly the equations describing the dynamics of
=D2‘fft, where nowDEff is a single particle and of beads belonging to infinite Rouse

chains in time-dependent MdM flows. For short times and

D 4A K1 slowly changing media, we recovered the results of the stan-
DN=—+ —~ [— . (37)  dard quenched MdM model. For large times we found nor-
N 372 V2D7w{ N mal diffusion in the cases of a single particle and of a finite

Rouse chain, and we computed the corrections to the diffu-
Again the time-dependent MdM flows are seen to produce &ion constant. For the infinite Rouse chain we found a sur-
“correction” to the diffusion constant at long times; this prisingly fast increase with time of the mean-square displace-
correction is of more importance the longer the chains. Foment, a result also valid for finite Rouse chains in
infinite chainsDY;; vanishes, a sign of the appearance forintermediate-time regimes.
N—oo of the sublineart®* behavior of Eq.(28). The result
can be understood in terms of the renewal of the process of
Eq. (28): Thus fort>tg>1", assuming a loss of memory

after eachy units of time,(Yﬁ,(t)) can be expressed as being  The support of the DFG, of the GIF through Grant No.
around t/tg times (CA/(7Z?)[K/(4D%my)Y¥4td*. This  10423-061.14, and of the Fonds der Chemischen Industrie
leads to a correction of the diffusion constant of are gratefully acknowledged.
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