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Polymer dynamics in time-dependent Matheron–de Marsily flows: An exactly solvable model

S. Jespersen,1,2 G. Oshanin,2,3 and A. Blumen2
1Institute of Physics and Astronomy, University of Aarhus, DK-8000 Århus C, Denmark
2Theoretische Polymerphysik, Universita¨t Freiburg, D-79104 Freiburg i.Br., Germany

3Laboratoire de Physique des Liquides, Universite´ Paris IV, 4, Place Jussieu, F-75252 Paris, France
~Received 4 September 2000; published 22 December 2000!

We introduce a model of random layered media, extending the Matheron–de Marsily model: Here we allow
for the flows to change in time. For such layered structures, we solve exactly the equations of motion for single
particles and also for polymers modelled as Rouse chains. The results show a rich variety of dynamical
patterns.
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I. INTRODUCTION

The dynamics of particles and particle assemblies in r
dom force fields is a subject of intense current interest~see
Refs.@1–3# and references therein!. Such fields often lead to
qualitative deviations from simple dynamic patterns, and
sult in the anomalous diffusion of the particles involved.
standard prototype model is that of Matheron and de Mar
flows ~MdM! @1–10#, originally designed to describe th
transport of a solute in porous media. Similar mathemat
forms arise when treating electrons in random potentials
spin depolarization in random fields@10#. In the MdM model
the environment is viewed as consisting of layers of fo
fields @4#. The particle mean-square displacement~MSD! in
the direction parallel to the flows, say, along theY axis,
^Y2(t)&, can be evaluated exactly; it has been shown tha
grows aŝ Y2(t)&;t3/2 @4,5,8#, t being the time. Recently the
dynamics of Rouse polymer chains in time-independ
MdM flows was also discussed and several exact results h
been derived@1,2#. In particular, it has been shown that th
MSD of some tagged bead of the chain may display differ
dynamical regimes depending on whether the time of ob
vation is shorter or longer than the so-called Rouse timetR .
Now tR goes asN2, whereN is the degree of polymerization
i.e., the chain’s length@11–13#. For times shorter thantR a
subballistic law ^Y2(t)&;t7/4 was derived, while it was
shown that for times longer thantR the t3/2 dependence is
restored, the prefactor being a growing function ofN. Thus a
tagged monomer of a polymer immersed in MdM flow
moves in general faster than an individual particle~i.e., a
chain withN51), a fact which has its physical explanatio
@1,2#.

These results concern, however, velocity fields whose
rections and magnitudes are random in space but fixe
time: we speak of quenched disorder. For random div
genceless velocity flows, for which the flows change w
time, we show in the following that new results emerge.

In the present paper we present exact dynamical solut
both for individual particles and for long Rouse chains mo
ing in time-dependent, random layered media. Distinct fr
previous works@1,2,4,5,8#, we now allow the velocities in
the layers to change randomly with time. We thus take i
account the fact that the environment itself may be subjec
dynamical processes, thereby introducing new time sc
1063-651X/2000/63~1!/011801~6!/$15.00 63 0118
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into the problem. By this the time fluctuations of the flo
give rise to interesting dynamical behaviors. In particular,
show that at intermediate times (t!tR) the MSD of any
tagged bead of a polymer chain follows^Y2(t)&;t3/4; i.e.,
the MSD moves faster than the Rouse law^Y2(t)&;t1/2

which holds in the flow-free case@12,13#. On the other hand
at timest@tR , we recover a diffusive behavior, in which
however, the effective diffusion constant scales asN21/2 for
sufficiently long chains, i.e., vanishes withN at a slower rate
than the Rouse diffusion constant, which goes as 1/N.

The paper is structured as follows: In Sec. II we formula
the model and introduce the basic notation. In Sec. III
analyze the dynamics of an individual particle subject
time-dependent MdM flows. Section IV is devoted to t
analysis of the dynamics of a tagged bead of an infinit
long Rouse chain, while Sec. V deals with effects typical
finite chains. We conclude with a discussion and a brief su
mary of results in Sec. VI.

II. THE MODEL

A standard polymer model due to Rouse@11# consists in
viewing the macromolecule as a series ofN beads, linearly
connected by harmonic springs. Its dynamics in solution,
subject to external force fields and excluding hydrodynam
interactions and steric hindrances, is given by the Lange
equation@11–13#

z
dRn

dt
5K~Rn111Rn2122Rn!1F~Rn ,t !1h~n,t !, ~1!

for 1<n<N, complemented byR0[R1 andRN[RN11. In
this equationz is the coefficient of friction,Rn is the position
of the nth monomer,K53kBT/b2 is the spring constant ac
counting for the Hookean interaction of the monomers,kBT
being the temperature multiplied by the Boltzmann const
and b the average distance between the beads, andh(n,t)
represents the thermal noise due to interactions with the
vent. In Eq.~1! the F(Rn ,t) denote the extra forces due t
the imposed velocity fields. Equation~1! is a simplified de-
scription of the dynamics of a polymer inu solutions
@12,13#.

Treating the indexn as continuous leads to the replac
ment of the discrete term (Rn111Rn2122Rn) by the La-
©2000 The American Physical Society01-1
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placian operator]2Rn /]n2 and of R0[R1 and RN[RN11
by the Rouse boundary conditions@12#

]Rn

]n
50, for n50 and n5N. ~2!

Next, we specify the forces entering the right-hand s
~RHS! of Eq. ~1!. We let, as usual, the thermal noise
Gaussian with zero mean; due to the fluctuation-dissipa
theorem, the second moment takes the form

ha~n,t !hb~n8,t8!52kBTzda,bdn,n8d~ t2t8!. ~3!

In Eq. ~3! we let the Greek indices denote the Cartes
components. The MdM model is obtained by assuming l
ered flows, say, by taking the forces to be along theY axis,
but to depend solely on theX component~see, e.g., Fig. 1 in
@1#!:

F~Rn ,t !5„0,f ~Xn ,t !,0…. ~4!

This choice ofF models a layered medium along theX axis;
each layer has a random~but for all points of the layer fixed!
velocity pointing along theY axis. Due to the uncoupling o
the different components in the Rouse model, the dynam
in the transversal plane~i.e., theX andZ components! is not
influenced by the presence of the velocity fields. However
we shall see, the motion parallel to theY axis is dramatically
changed.

The random forceF(Rn ,t) ~i.e., its Y component! is as-
sumed to be Gaussian and zero centered. For the se
moment we take

^ f ~X,t ! f ~X8,t8!&5
D

2G
d~X2X8!e2ut2t8u/G. ~5!

Note that the strength of the random velocity field depe
on the constantsG and D. Equation~5! defines a changing
environment with a short-term memory, exponentially d
creasing on the time scaleG; we will call G the renewal time.
In the limit G→` and keeping the ratioD/G fixed we re-
cover the standard quenched MdM model. We shall den
this limiting procedure as thequenched limitin the rest of the
paper. On the other hand, whenG→0, exp(2utu/G)/(2G)
tends to the Diracd(t) distribution; this limit allows us to
study an environment without memory. We distinguish av
ages over thermal histories from averages over config
tions of the velocity field by using an overbar for the form
and angular brackets for the latter.

III. DYNAMICS OF A SINGLE PARTICLE

To fix the ideas, we start with the case of a single bead
time-dependent MdM flows. ThenN51 andK50. Because
of the decoupling of the different coordinates, theX and Z
components of the particle displacement obey the force-
Langevin equation

z
dX

dt
5hx~ t !, ~6!
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with hx(t) being theX component of the thermal noise
Equation~6! yields for the MSD averaged over thermal hi
tories the usual diffusion result

X2~ t !52
kBT

z
t 52Dt. ~7!

Through the last relation we have introduced the ‘‘bar
diffusion constantD. For theY component we have to solv
the equation

z
dY

dt
5hy~ t !1 f „X~ t !,t…, ~8!

with f „X(t),t… being the random function of Eq.~5!. The
solution of Eq.~8! is

Y~ t !5
1

zE0

t

dt@hy~t!1 f „X~t!,t…#, ~9!

where we setY(0)50. Being interested in the mean-squa
displacement we have

^Y2~ t !&52Dt1
1

z2E0

t

dt1E
0

t

dt2^ f „X~ t1!,t1…f „X~ t2!,t2…&,

~10!

by noting that the different sources of randomness are de
pled. Then, by virtue of Eq.~5! we have for the second term

E
0

t

dt1E
0

t

dt2^ f „X~ t1!,t1…f „X~ t2!,t2…&

5
D

2GE0

t

dt1E
0

t

dt2 d„X~ t1!2X~ t2!…e2ut12t2u/G. ~11!

Now it is a simple matter to average thed function on the
RHS of Eq.~11!, by making use of its Fourier representatio
this yields

d„X~ t1!2X~ t2!…5E
2`

` dk

2p
exp$2 ik@X~ t1!2X~ t2!#%

5E
2`

` dk

2p
exp~2Dk2ut12t2u!

5
1

A4pDut12t2u
. ~12!

Here we noted that the processX(t) is Gaussian and we use
in the second line the well-known rule for averaging Gau
ian exponential forms. Inserting Eq.~12! into Eq. ~11! and
integrating leads to

^Y2~ t !&52Dt1
D

2z2
AG

D
$~ t/G21/2!erf @At/G#

1At/~pG!e2t/G%, ~13!
1-2
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where erf@x# denotes the error function, Eq.~7.1.1! in Ref.
@14#. Equation~13! is exact and is the main result of th
section. From Eq.~13! we have in the limitt!G

^Y2~ t !&52Dt1
2DG1/2

3z2ADp
S t

G D 3/2

1OXS t

G D 5/2C, ~14!

where the second term represents the result for stand
quenched MdM flows@4#. The physics underlying such
behavior is well understood@1,2,4,6,7,9# and it is due to
dynamically induced correlations in the velocities felt by t
particle.

In the opposite limit,t@G, we are led to

^Y2~ t !&52Dt1
D

2z2G
AG

D
t1O~1!52De f ft1O~1!,

~15!

where

De f f5D1
D

4z2G
AG

D
; ~16!

i.e., we find diffusion with a renormalized diffusion coeffi
cient.

Thus for large timest the fluctuations of the environmen
~flow! contribute additively to the diffusion coefficient. Not
however, that now diffusion is anisotropic: Parallel to a
perpendicular to the layers one hasD uu5De f f and D'5D,
respectively. The dependence ofDe f f on both D and G is
easily visualized: For largerD the perpendicular motion is
more rapid and hence the velocity field viewed by the p
ticle changes more rapidly~and is less efficient!; further-
more, a decrease inG leads to a similar effect. On the othe
hand, in theG→` limit ~with D/G fixed! De f f diverges, a
sign that the motion gets to be superdiffusive; see Eq.~14!.

Since the disorder changes completely on the time s
G, one may view Eq.~15! as arising from renewals of th
process in Eq.~14! ~with total loss of memory! everyt units
of time, wheret is of the order ofG. In fact, since the
crossover in behavior from@2DG1/2/3z2(pD)1/2#(t/G)3/2 to
@D/2z2(GD)1/2#t occurs attc59pG/16'1.767G, we repro-
duce Eq.~16! exactly if we taket5tc .

IV. INFINITELY LONG ROUSE CHAIN

We consider next the opposite case of an infinitely lo
Rouse chain. For a given thermal history, the solution of
~1! for the Y component of the displacement of thenth bead
can be readily found by standard means~see Refs.@1,2#! and
reads

Yn~ t !5
1

zE0

t

dt E
2`

`

dl P~n2 l ,t2t!@ f „Xl~t!,t…1hy~ l ,t!#,

~17!

where we again, for simplicity, assumed thatYn(0)50.
Here P( l ,t) is the Green’s function solution of the one
dimensional~1D! diffusion equation
01180
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P~ l ,t!5A z

4pKt
expF2

z l 2

4KtG . ~18!

The MSD of thenth bead, averaged both over thermal h
tories and over random velocity fields, takes the form

^Yn
2~ t !&52DS z

2pK D 1/2

t1/21
D

2Gz2E0

t

dt1E
0

t

dt2E
2`

`

dl1

3E
2`

`

dl2 P~n2 l 1 ,t2t1!P~n2 l 2 ,t2t2!

3e2ut12t2u/G d„Xl 1
~t1!2Xl 2

~t2!…, ~19!

where we used the second moment of the velocity fie
given by Eq.~5!.

To proceed further, we need to kno
d„Xl 1

(t1)2Xl 2
(t2)…. This form can be evaluated exact

~see Refs.@1,2,12,13# for more details!. The result~for t1
<t2) is explicitly

d„Xl 1
~t1!2Xl 2

~t2!…5S K

4pzD2D 1/4

M ~ l 22 l 1 ,t1 ,t2!21/2,

~20!

in which the functionM ( l ,t1 ,t2) stands for

M ~ l ,t1 ,t2!5~2t1!1/21~2t2!1/2

24S pK

z D 1/2E
0

t1
dt P~ l ,t11t222t!.

~21!

Inserting Eqs.~20! and ~21! into Eq. ~19! and reverting to
dimensionless variables, say, by setting

u15t1 /t, u25t2 /t, u5t/t,

z15~ l 12n!S z

4Kt D
1/2

, z25~ l 22n!S z

4Kt D
1/2

, ~22!

we finally arrive at the expression

^Yn
2~ t !&52DS z

2pK D 1/2

t1/21
D

pGz2 S K

4D2pz
D 1/4

t7/4g~ t/G!,

~23!

with g(h) being the dimensionless function:

g~h!5E
0

1

du2E
0

u2
du1 e2(u12u2)hE

2`

`

dz1

3E
2`

`

dz2

e2z1
2/(12u1)2z2

2/(12u2)

A~12u1!~12u2!M̃ ~z12z2 ,u1 ,u2!
,

~24!

where foru2>u1 the functionM̃ (z,u1 ,u2) is
1-3
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M̃ ~z,u1 ,u2!5A2u11A2u222E
0

u1
du

e2z2/(u11u222u)

Au11u222u
.

~25!

In the limit G→` ~quenched MdM flows! h5t/G tends to
zero andg(h) to a constant. Hence, forG→` and not-too-
small t one haŝ Yn

2&;t7/4; this reproduces precisely the co
responding result derived in Refs.@1# and@2#. Moreover, we
expect this dynamical behavior to show up also for finiteG,
as long ast!G, i.e. h!1.

Turning now to finite but smallG, for t@G, i.e., h
5t/G@1, the leading large-h behavior of g(h) can be
found by integrating in Eq.~24! overu1 by parts with respec
to exp(u1h). We find thatg(h) has the form

g~h!5
C

h
1OS 1

h2D , ~26!

whereC is a dimensionless constant, given by

C5E
0

1

duE
2`

`

dz1E
2`

`

dz2

e2(z1
2
1z2

2)/(12u)

~12u!AM̃ ~z12z2 ,u,u!
.

~27!

Inserting now Eq.~26! into Eq.~23! we find that the MSD of
any bead of an infinitely long Rouse chain obeys

^Yn
2~ t !&52DS z

2pK D 1/2

t1/21
CD

pz2 S K

4D2pz
D 1/4

t3/4

1O~ t21/4!. ~28!

The significant terms of Eq.~28! can be understood as fo
lows: The first term is just the Rouse result in the absenc
flows. The second term arises due to the time dynamic
the MdM flows, to be contrasted with thet7/4 term for
quenched MdM flows. This term appears, of course, e
when the time correlation in Eq.~5! is of d form, i.e., for
G→0.

Therefore, we have for monomers attached to long po
mer chains that at long times^Yn

2(t)&;t3/4, i.e., that the ex-
ponent of the anomalous diffusion is larger than in the for
free case. One may contrast this behavior to that of a sin
particle, where at long times time-dependent velocity fie
only change the diffusion constant, but leave the exponen
t ~unity! unchanged. Hence the influence of the veloc
fields on the monomer’s motion differs from that of the the
mal noise. The difference can be traced to the form of
disorder; the solvent’s role is included through Md
d„Xl 1

(t1)2Xl 2
(t2)… fields, which depend on theX compo-

nents of the positions of the beads, while thermal noise
pends ond l 1 ,l 2

. This means that while different monome
always experience different forces from the heat bath,
tinct monomers with the sameX components~there are many
such monomers, since the polymer’s projection on theX axis
corresponds to a simple random walk! experience identica
velocity fields, a fact which qualitatively enlarges^Yn

2(t)&.
01180
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V. FINITE ROUSE CHAINS

For finite Rouse chains there appears yet another t
scale, namely, the so-called Rouse timetR5zN2/(p2K)
@11–13#, tR being the largest internal relaxation time of th
structure. To display its role we start by solving Eq.~1! for
finite N. The solution is found most readily in terms of no
mal coordinates@12#, introduced, say, forYn(t), through

Yn~ t !5 (
p52`

`

cos~ppn/N!Y~p,t !, ~29!

and similarly forXn(t) andZn(t). Inserting these forms into
the equation of motion, Eq.~1!, and solving yields straight-
forwardly for theX component@1#

X~p,t !5
1

NzE0

t

dtE
0

N

dn hx~n,t!cos~ppn/N!e2p2(t2t)/tR,

~30!

and similarly for theZ component. For theY component one
has instead

Y~p,t !5
1

NzE0

t

dtE
0

N

dn @hx~n,t!1 f „Xn~t!,t…#

3cos~ppn/N!e2p2(t2t)/tR. ~31!

The behavior of the beads depends on the ratiot/tR . For
short timest!tR the sums overp for Xn(t), Yn(t), and
Zn(t), e.g., Eq.~29!, can be converted into integrals; exem
plarily, inserting Eq.~31! into Eq. ~29! and performing the
integration leads to Eq.~17!. Thus for t!tR each bead be-
haves as if it were part of an infinite chain: Hence the res
from the previous section apply. In the opposite regime,
t@tR , only the zeroth modep50 contributes significantly to
Eq. ~31!, and the motion of each bead follows closely that
the center of mass~c.m.! of the chain. In the case of theX
and Z components, this is a diffusive behavior with th
renormalized diffusion constantD→D/N @11–13#. For theY
component, however, we have fort@tR approximately

^Yn
2~ t !&.^Y2~0,t !&52

D

N
t1

D

2N2Gz2E0

t

dt1E
0

t

dt2E
0

N

dn1

3E
0

N

dn2 d„Xn1
~t1!2Xn2

~t2!…e2ut12t2u/G. ~32!

We remark that the terms on the RHS of Eq.~32! describe
the dynamics of theY component of the chain c.m. for allt.
The evaluation of Eq.~32! is rendered complex for finiteN
due to the appearance of the two-timed function in the in-
tegral. It is, however, possible to proceed along the lines
Ref. @2#, but this is outside the scope of the present artic
Since the analysis simplifies forG→` and for G→0, we
shall consider only these two cases in the following.

For G→` the flows get to be time independent; then t
approach follows the derivation given in@1,2# for quenched
1-4
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MdM flows. There it was found that the leading behavior
the bead’s motion obeys@Eq. ~36a! of Ref. @1#, here in our
notation#

^Yn
2~ t !&;

D

Gz2
AN

D
t3/2; ~33!

that is, the c.m. moves practically as an individual partic
i.e., Eq.~14!, with D being, however, replaced byD/N.

For G→0, we have for the second term~call it I ) in Eq.
~32!

I 5
D

N2z2E0

t

dtE
0

N

dn1E
0

N

dn2 d„Xn1
~t!2Xn2

~t!…. ~34!

For t@tR most of thet in Eq. ~34! also obeyt@tR , so that
we may view the GaussianX process as stationary, i.e
„Xn1

(t)2Xn2
(t)…25Dzun12n2u/K, independent of t.

Hence

d„Xn1
~t!2Xn2

~t!…5E
0

` dk

2p
eik[Xn1

(t)2Xn2
(t)]

5E
0

` dk

2p
e2k2Dzun12n2u/2K

5A K

2Dpzun12n2u
. ~35!

Inserting now Eq.~35! into Eq. ~34! and performing the in-
tegrations leads to

I 5
D

N2z2
A K

2DpzE0

t

dtE
0

N

dn1E
0

N

dn2un12n2u21/2

5
8D

3z2
A K

2Dpz

t

AN
. ~36!

Using this expression in Eq.~32! we see that^Yn
2(t)&

5De f f
N t, where nowDe f f

N is

De f f
N 5

D

N
1

4D

3z2
A K

2Dpz

1

AN
. ~37!

Again the time-dependent MdM flows are seen to produc
‘‘correction’’ to the diffusion constant at long times; th
correction is of more importance the longer the chains.
infinite chainsDe f f

N vanishes, a sign of the appearance
N→` of the sublinear,t3/4 behavior of Eq.~28!. The result
can be understood in terms of the renewal of the proces
Eq. ~28!: Thus for t@tR@G, assuming a loss of memor
after eachtR units of time,̂ YN

2 (t)& can be expressed as bein
around t/tR times (CD/(pz2))@K/(4D2pz)1/4#tR

3/4. This
leads to a correction of the diffusion constant of
01180
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2tR

CD

pz2 S K

4D2pz
D 1/4

tR
3/45

3C

8p1/4

4D

3z2
A K

2Dpz

1

AN
,

~38!

which is 3C/(8p1/4) times the correction in Eq.~37!.
A similar argument can be put forth whent@G@tR . In

this case,̂ Yn
2(t)& can be viewed as arising from renewa

~everyG units of time! of the process given by Eq.~33!. This
leads to yet another effective diffusion constantD̃e f f

N , which
besidesD/N has an additional term proportional to

D

z2
A N

DG
. ~39!

This reproduces~after replacingD/N by D) the result of the
single-particle case, Eq.~16!.

We summarize the findings for the MSD of a bead on
finite Rouse chain. Whent@max(tR,G), there is normal but
anisotropic diffusion of the bead under observation, d
scribed by the diffusion constantD'5D in the directions
perpendicular to the flow and an effective diffusion const
D uu.D parallel to the flow. The value ofD uu depends on
whether tR!G or tR@G: For tR!G, D uu5D̃e f f

N @see Eq.
~39!#, and for tR@G, D uu5De f f

N , Eq. ~37!. In the short-time
regimet!min(tR,G), we always haveYn

2(t);t7/4. However,
the intermediate regime again depends on the magnitude
tR andG. If tR!G we observêYn

2(t)&;t3/2 @Eq. ~33!# in the
regimetR!t!G. But if, on the other hand,G!tR , then for
times t obeying G!t!tR , the MSD behaves aŝYn

2(t)&
;t3/4. Our model gives therefore rise to a very rich dynam
cal behavior.

VI. CONCLUSION

In this work we introduced a new variant of th
Matheron–de Marsily model of layered random media,
which the velocity field is also allowed to change with tim
We solved exactly the equations describing the dynamic
a single particle and of beads belonging to infinite Rou
chains in time-dependent MdM flows. For short times a
slowly changing media, we recovered the results of the s
dard quenched MdM model. For large times we found n
mal diffusion in the cases of a single particle and of a fin
Rouse chain, and we computed the corrections to the di
sion constant. For the infinite Rouse chain we found a s
prisingly fast increase with time of the mean-square displa
ment, a result also valid for finite Rouse chains
intermediate-time regimes.
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